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Entanglement has been recognized as being crucial when implementing various quantum information tasks.
Nevertheless, quantifying entanglement for an unknown quantum state requires nonphysical operations or
post-processing measurement data. For example, evaluation methods via quantum state tomography require vast
amounts of measurement data and likely estimation. Although a direct entanglement determination has been
reported for the unknown pure state, it is still tricky for the mixed state. In this work, assisted by weak mea-
surement and deep learning technology, we directly detect the entanglement (namely, the concurrence) of a class
of two-photon polarization-entangled mixed states both theoretically and experimentally according to the local
photon spatial distributions after weak measurement. In this way, the number of projective bases is much smaller
than that required in quantum state tomography. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.498498

1. INTRODUCTION

Entanglement is an essential resource for nonclassical informa-
tion tasks in quantum communication [1,2] and quantum
computation [3,4], and has also been applied to nonlinear
molecular spectroscopy [5]. However, quantifying entangle-
ment requires nonphysical operations or post-processing of the
measurement data [6].

One of the most common quantifications of entanglement
is concurrence [7,8], and its determination generally requires
quantum state tomography [9,10], which relies on projective
measurements to form a set of projective bases on the Hilbert
space of the system, providing all the information about the
state. The number of projective bases increases exponentially
with the system scaleup. When the scale of the system is very
large, it is impossible to perform projective measurements. To
circumvent this impossibility, several approaches have been
proposed to quantify the concurrence, including collective

measurements [11] and the interference between two copies
of the quantum states [12]. However, such approaches contra-
pose two-qubit pure states and cannot be directly applied to the
case of the complicated mixed state.

Recently, weak measurement technology has been used to
directly detect quantum states, including the transverse wave-
function of the photon states [13], the density of a mixed two-
qubit state [14], and even entangled states [15]. The weak
measurement can extract a small amount of information from
a single outcome. Although each outcome of the weak measure-
ment is uncertain, the average value can build a certain value,
named weak value, to reveal the state information.

In this study, we experimentally use the wake values to dem-
onstrate the feasibility of entanglement quantification associ-
ated with a deep learning two-photon polarization-entangled
system. Specifically, we compress the weak value information
of two-qubit photonic states into local conditional states, which
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are illustrated via the spatial distributions of photons. An end-
to-end relationship between the concurrence and the distribu-
tion of photons is determined by a well-trained convolutional
neural network (CNN) [16]. We find that only two projective
bases are needed to predict the concurrence, greatly reducing
the operation time. Besides, the generalization of this method
can quantify the entanglement of high-dimensional multipar-
ticle pure states, and the advantage of this method is exponen-
tially increased.

2. THEORETICAL FRAMEWORK AND CNN
PERFORMANCE

Here, we consider a two-qubit (A and B) system, which is in a
class of quantum states ρAB as [17]

ρAB�p, θ� � pjψθihψθj � �1 − p�IA∕2 ⊗ ρθB , (1)

where jψθi � cos θj00i� sin θj11i and ρθB � TrA�jψθihψθj�.
θ ∈ �0, 45°� and p ∈ �0,1� are two state parameters. These states
are of the form X-type, and the parameter p controls the com-
ponents of pure states and mixed states. Figure 1 (insert) shows
the main processes involved in our approach, in which we per-
form a local projective measurement ΓA on A, where ΓA �
j j0i�j1iffiffi

2
p ihj0i�j1iffiffi

2
p j. The information about entanglement is com-

pressed into the local conditional state of B, written as

ρΓA
B � TrA�ρABΓA ⊗ IB �

Tr�ρABΓA ⊗ IB �
: (2)

To extract the information about entanglement, one can
execute a weak measurement of the Pauli observable
σ̂x � j0ih1j � j1ih0j on B [18,19]. Via post-selecting on
the state jki (k ∈ f0,1g), the obtained weak value [20,21]
can be written as

hkjhσ̂xiwΓA
� Tr�σ̂xρΓA

B jkihkj�
Tr�ρΓA

B jkihkj�
, (3)

which is closely related to the density matrix elements of ρΓA
B .

This value reflects the distance between ρΓA
B and the maximally

mixed state 1
2 IB , which is visually illustrated in the Bloch sphere

in Fig. 1 (see Appendixes A and B for more details). The con-
currence of the class states can be expressed as

C�ρAB� �
�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh0jhσ̂xiwΓA

jjh1jhσ̂xiwΓA
j

q
− 1

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh0jhσ̂xiwΓA

jjh1jhσ̂xiwΓA
j

q
jh0jhσ̂xiwΓA

j � jh1jhσ̂xiwΓA
j : (4)

In particular, when ρAB is the pure state, C�ρAB� is reduced toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jh0jhσ̂xiwΓA

j2
q

, and ΓA is reduced to identity measure-

ment [7].

Fig. 1. Theoretical framework and performance of the convolutional neural network (CNN). The weak values h1jhσ̂xiwΓA
and h0jhσ̂xiwΓA

of B on the
state of ρΓA

B (as shown in the Bloch sphere) are encoded in the central position of a Laguerre–Gaussian mode. The projected particle distribution is
sent to the CNN to extract the concurrence. The boxes indicate the dimension (width of the box) and number (height of the box) of the feature
maps. Convolution layers (Conv) with one stride are shown in a buff color. Activation functions (ReLU) of the convolution layers and full con-
nection layers (FC) are denoted by the orange and purple colors, respectively. The red boxes indicate max-pooling layers (MPs) with two strides, and
a small green ball represents the output concurrence. The arrows represent the flow of data. Insert: ρAB is a two-qubit entangled state. The spatial
distribution of B’s conditional state ρΓA

B is obtained, while a local projective measurement ΓA is performed on A.
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To conveniently access the weak values, here we introduce
orbital angular momentum (OAM) as a pointer, where the real
and imaginary parts of hkjhσ̂xiwΓA

are encoded as the coordinate

x- and y-positions, respectively, of the central singular point
[18,19] of the Laguerre–Gaussian (LG) mode on the local spatial
distribution (see Appendix C for more details). This singular
center can be extracted by straightforward optimal estimation
or the least-square fit method. However, this weak shifting of
the singular center is too susceptible to be effectively identified
because of the experimental noise. To solve this problem, we
attempt to directly extract the concurrence from the local spatial
distribution by using a deep learning (DL) method [22], which
has been used to solve many-body [23], large-scale quantum
tomography [24], quantum state [25], and nonclassical correla-
tion [26] problems. Specifically, we use a CNN to establish
end-to-end mapping from the photon distribution to the con-
currence, which avoids taking account of the form of the fitting
functions or the relations between the weak values and concur-
rence. To train the CNN, we prepare a large number of two-
qubit states ρAB . The corresponding local spatial distributions
are used as features, and the concurrences determined from the
tomographic data are used as the label. After being trained with a
substantial number of distribution-concurrence pairs, the CNN
establishes a statistical functional mapping between the local spa-
tial distributions and the concurrence. The concurrence of the
training set is labeled using the traditional method [7,8] by re-
constructing the density matrix ρAB . The CNN also considers
the imperfection of the local spatial distribution, so this method
has high accuracy and strong robustness.

As shown in Fig. 1, the CNN consists of two paths: the con-
volution path and the full connection (FC) path. There are three
blocks in the convolution path. The input images are mapped

into the feature space by convolution layers and downsampled
by max-pooling layers to magnify the weak variance in each
block. To fit the concurrence, the output results of the convo-
lution path are flattened into a one-dimensional vector and sent
to the FC path, which contains four layers with different neurons.
The activation function of each layer is selected to be ReLU
[y � max�0, x�] so that the network can fit the nonlinear func-
tion. We use the Adam optimizer [27], which can effectively pre-
vent local optimization. The mean squared error (MSE), which is
used as the loss function, is defined as 1n

Pn
1 �Ci

act − Ci
pre�2, where

n is the total number of samples, Ci
act represents the actual con-

currence labeled by the traditional method, and Ci
pre means the

predicted concurrence. Some neurons were deleted to prevent
overfitting (see Appendix D for more details).

3. EXPERIMENTAL DEMONSTRATION

The experimental setup is shown in Fig. 2. A 20 mm long peri-
odic KTiOPO4 (PPKTP) crystal located in the Sagnac inter-
ferometer [28] is pumped by a 404 nm continuous-wave
diode laser to create a pair of polarization-entangled photons
via a type-II spontaneous parametric down-conversion process.
These two photons are then sent to Alice and Bob. To generate
the entangled state cos θjHH i � sin θjV V i (where H and V
represent horizontal and vertical polarization, respectively), a
half-wave plate HWP1 is used to control the parameter θ by
rotating the polarization of the pump laser.

On Alice’s side, the photon beam passes through an unbal-
anced interferometer (UI), first separated into two paths
by a beam splitter (BS). Two sufficiently long calcite crystals
(CCs) with HWP4 set to 22.5° between them are placed on
one of the paths to destroy the coherence between the different

Laser at 404nm

Fig. 2. Experimental setup. (a) A pair of polarization-entangled photons are generated by pumping a type-II PPKTP crystal in a Sagnac inter-
ferometer with a 404 nm ultraviolet laser in the preparation stage. A half-wave plate HWP1 is set in front of the pump laser to rotate the polar-
izations. The polarizations of the pump light and down-converted photons are exchanged by the dual-wavelength HWP2, which is set to 45° in the
Sagnac interferometer. HWP3 is used to change the form of the entangled state and is set to 45°. Bob’s and Alice’s photons pass through a weak
measurement system (WM, shown in the gray dotted-line square) and an unbalanced interferometer (UI), respectively. The UI separates the photon
into two paths by a beam splitter (BS). There are two sufficiently long calcite crystals (CCs) with the second length being twice larger than that of the
first. In-between these crystals,HWP4 is set to 22.5° in one of the paths. This setup destroys the coherence in the different polarization components.
Two variable filters (VFs, in the red dotted line circles) control the relative photon counts between the two arms. In the WM, the photon passes
through a vortex phase plate (VPP, l � 2) and is shaped into the Laguerre–Gaussian mode. HWP5, HWP6, and a thin birefringent crystal (TBC)
with its axis set to 42° in the x-o-z plane are used to weakly couple the polarizations and momentum of the photon. (b) Quarter-wave plates (QWPs),
HWPs, and polarization beam splitters (PBSs) on both sides of Alice and Bob (shown in the gray squares) are used to perform the projective
measurements. On Bob’s side, the photons are detected by a single-photon detector (SPD) in the reflected path or by an intensified charge coupled
device (ICCD) camera in the transmitted path. The signals detected by the SPD on Alice’s side are sent for coincidence or to trigger the ICCD
camera. To train the convolutional neural network (CNN), the concurrence determined from the tomographic data is used as the label and the
images recorded by the ICCD camera are used as the features, as indicated by the black and red arrows, respectively.
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polarization components. In contrast, the state in the other
path remains unchanged. Two variable filters (VFs) are used
to change the relative photon counts in these two paths (N 1

and N 2), where the parameter p can be written as
p � N 1∕�N 1 � N 2�. The two-qubit states ρAB�p, θ� can be
prepared when these two paths are combined.

On Bob’s side, the photon passes through a weak coupling
system (WCS). A vortex phase plate (VPP) is placed to generate
an LG wavefunction ϕl �x, y� with an OAM of l � 2.
Thereafter, a thin calcite crystal (TBC) with a thickness of
0.7 mm is employed to introduce a weak interaction between
the polarization and the momentum of the photon; its optical
axis is set in the x–o–z plane, and it is oriented at 42° with
respect to the z axis [29]. Combining a pair of HWPs
(HWP5 and HWP6) with optical axes set to 22.5°, the inter-
action Hamiltonian is Ĥ � ζσ̂x ⊗ Px , where Px � −iℏ ∂

∂~x rep-
resents the momentum operator, ζ is the coupling strength,
and σ̂x � jH ihV j � jV ihH j.

The polarization states on both sides are measured by a
group of quarter-wave plates (QWPs), an HWP, and a polari-
zation beam splitter (PBS). The coincidence from tomographic
measurement is used as the label of CNN while the photon
distributions are used as the input features of CNN. On
Alice’s side, the photon is detected by a single-photon detector
(SPD), and the signal is sent for coincidence or to trigger the
intensified charge-coupled device (ICCD) camera on Bob’s
side. In our experiment, we use a coincidence window of
3 ns and an exposure time of 1 s for all measurements. The
projective direction on Alice’s side only needed to be selected
as ΓA � jDihDj (jDi � jH i�jV iffiffi

2
p ) in this experiment.

On Bob’s side, the photon is detected by an SPD and an
ICCD camera in the reflected path and the transmitted
path, respectively. The signal from SPD is sent for coinci-
dence to reconstruct the experimental density matrix ρexp
(the reflected path of the PBS). The fidelities�
Tr
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρAB�p, θ�
p

ρexp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρAB�p, θ�

pq i
2
�

between the theoreti-

cal physical states ρAB�p, θ� and the experimental states ρexp
are more than 92%. The concurrences C act are calculated from
ρexp [7,8]. The photon spatial distributions are detected by the
ICCD camera. A small down-rightward deflection (ϕl �x,y�→
ϕH �V �
l �x −Re�hH �V �jhσ̂xiw�,y− Im�hH �V �jhσ̂xiw��; see Appendix C

for more details) is introduced [18,19] after post-selecting the
photon state onto the basis jH ihH j (jV ihV j). hH �V �jhσ̂xiw
can be obtained according to Eq. (3) with ρΓA

B �
TrA�ρABjDihDj ⊗ IB �∕Tr�ρABjDihDj ⊗ IB � representing the
corresponding local conditional state. The final intensities
IH � jϕH

l j2 and IV � jϕV
l j2 of the photon spatial distribu-

tions are detected by the ICCD camera (Fig. 3). Obviously,
only a single projective base is needed to detect the weak value
hH �V �jhσ̂xiw while quantum state tomography (QST) needs
16 projective bases. The total number of photon pairs that con-
tribute to each base is approximately 600,000 (600,000 repe-
titions) with integral time 1 s. If the number of repetitions is
too small, the estimation error will be increased, and more data
will be required to train the CNN.

In our experiment, we prepared 415 states, with 349 of the
feature-label pairs being randomly chosen to be in the training

data and the remaining 66 pairs serving as test data. Some pho-
ton distributions with different concurrences in the training set
and an example of matrices ρAB�p � 0.9, θ � 0.81� and ρΓA

B
are shown in Fig. 3.

We first investigated the convergence of CNN. The perfor-
mance with training time (epoch) is shown in Fig. 4(a). The
weight of the CNN is optimized with the batch size 10 for
200 epochs. MSE (brown line) falls below 0.07 and PCC
(green line) reaches 0.92 at the end of the training process,
which demonstrates small prediction errors and strong rel-
evance. The CNN learns more and more information concern-
ing the entanglement with increasing epochs and is well trained
when the epoch number is 200.

To demonstrate the predicted concurrence (Cpre) accuracy
of the trained CNN, we compared it to the concurrence (actual
concurrence CQST) calculated by QST. The predicted concur-
rences (brown dots) for the test data are shown in
Fig. 4(b). The point distribution is close to the optimal curve
(blue line), which means that the predicted concurrences
approximate the actual concurrences. We can also find the er-
rors (uncertainty) between the concurrence Cpre predicted by
CNN and the actual concurrence CQST is less than 0.2
(jCpre − CQSTj < 0.2). With further optimization of the
CNN parameters and an increase in the training data, the error
can be further reduced.

The predicted concurrence distributions in the parameter
space of p − θ are shown in Fig. 4(c). The contour lines re-
present the theoretical boundaries of ρAB�p, θ�, and the pre-
dicted concurrence agrees with the theoretical trend. The
�p, θ� values of the dots are calculated by minimizing the value
of Tr�ρAB�p, θ� − ρexp�. We further investigated the source of
the error shown in Fig. 4(d). With an increase in the training
time, the average MSE of the separable states in the test set
approaches 10−4 (red bars), while the average MSE of the
entangled states in the test set approaches 10−2 (blue bars);
these values are reached when epoch is greater than 160.
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Fig. 3. Conditional states and photon spatial distributions. The
numbered dots in the Bloch sphere represent the conditional projec-
tive states of Bob. Local photon distribution (IH ) recorded by the
ICCD camera with the corresponding concurrence (C act) is shown
in front of the Bloch sphere. The density matrix ρΓA

B of the number
6 dot and the corresponding input state ρAB with p � 0.9 and
θ � 0.81 are shown; here, the solid and transparent bars represent
the experimental and theoretical results, respectively.
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These results imply that the CNN is more accurate when de-
termining separated states.

To estimate how the model is expected to perform in general
cases with limited samples, a fivefold cross-validation was
implemented with our CNN. The data set was split into five
parts, and each part was chosen in turn to be the test set, while
the rest were used as the training set sent to the CNN. The
mean MSE and PCC values of all five results converged to
0.09 and 0.87, respectively, when the epoch number is 200,
as shown in Fig. 4(e).

Figure 4(f ) demonstrates that the result is dependent on the
amount of data. With an increasing data size, we should be able
to predict the entanglement with greater accuracy.

4. SCALABILITY

It is worth noting that our entanglement quantification method
remains efficient even when scaling to pure states with larger
numbers of qubits or higher dimensions. To illustrate this, we
present the results of three-qubit pure states and two-qutrit
pure states below. The concurrence for multipartite pure states
ρP � jψihψ j in arbitrary dimensions can be expressed as [30]

C�jψi� � minγi∈γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�1 − Tr�ρ2γi ��

q
, (5)

where γ � fγig represents the set of all possible bipartitions
fAijĀig of f1, 2,…, ng, and ργi � TrĀi

ρP is the reduced den-
sity matrix across these bipartitions.

For three-qubit states ρABC , there are three possible bipar-
titions: γ � ffAjB,Cg, fBjA,Cg, fC jA,Bgg. The concur-
rence of an arbitrary three-qubit pure state jψABC i can be

rewritten as C�jψABC i� � minf2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det�ρA�

p
; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det�ρB�

p
,

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det�ρC �

p
g � minf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jh0jhσ̂xiwΓB,C

j2
q

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jh0jhσ̂xiwΓA,C

j2
q

,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jh0jhσ̂xiwΓA,B

j2
q

g, where ΓA,B , ΓB,C , and ΓC ,A represent

the measurement on the corresponding subsystem (A, B),
(B, C), and (C , A), respectively. Clearly, using the weak mea-
surement method, only three projective bases are required to
quantify the entanglement of any three-qubit pure state.
However, 64 projective bases are required for tomography.

In the computational basis fj0i, j1i, j2ig, an arbitrary two-
qutrit pure state can be expressed as

jψABi �
X2
i, j�0

aijjijiAB ,
X2
i, j�0

jaijj2 � 1: (6)

By combining Eq. (5) and Eq. (6), we can obtain
C�jψABi�2 � 4 det�ρB01�� 4 det�ρB02�� 4 det�ρB12�, where
ρBmn � ρB�mm�jmihmj � ρB�mn�jmihnj � ρB�nm�jnihmj�
ρB�nn�jnihnj represents the reduced density matrix of Bob in
the qubit subsystem. ρB�mn� is the matrix element of
ρB � TrA�jψABihψABj� in the m-th row and n-th column,
where m, n ∈ f0, 1, 2g and m ≠ n. Furthermore, it can be

easily demonstrated that C�jψABi��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jh0jhσ̂01iwΓB

j2
q

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jh0jhσ̂02iwΓB

j2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jh1jhσ̂12iwΓB

j2
q

, where σ̂mn � jmihnj�
jnihmj, and ΓB represents the identity measurement. Clearly,
for any two-qutrit pure state, only three projective bases are
needed to quantify the entanglement. However, when employ-
ing tomography, 81 projective bases are required.
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pre. (b) Distribution of predicted concurrences. The blue line represents

the optimal curve. (c) Concurrence distributions in the p − θ space. The dots and contour lines represent the experimental and theoretical results,
respectively. (d) Logarithm of MSE values of the entangled and separated states versus epoch. (e) CNN fivefold cross-validation performance. The
result is averaged five folds. (f ) CNN performance versus data size.
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As for universal N-partite D-dimensional pure state, there
are

PdN∕2e
j�1 Cj

N possible bipartitions and
PdD∕2e

k�1 Ck
D possible

qubit subsystems; thus, no more than
PdN∕2e

j�1

PdD∕2e
k�1 Cj

NC
k
D

projective bases are needed to quantify the entanglement.
dN∕2 �D∕2�e represents round N∕2 �D∕2� down to the near-
est integer, and Cj

N �Ck
D� represents the number of all combi-

nations of taking j�k� distinct elements from N �D� distinct
elements. In contrast, tomography requires D2N projective
bases. Clearly, the benefits of our method become increasingly
apparent as the scale and the number of dimensions of the sys-
tem increase.

5. CONCLUSION AND DISCUSSION

In this study, we established the relations between the concur-
rence and weak values, where the weak values were encoded
into the transverse Laguerre–Gaussian (LG) photon distribu-
tions. By detecting the shift of singular center, we can directly
get the concurrence. This weak measurement method will
greatly reduce the number of projective bases and save the mea-
surement resources. For a class of mixed two-qubit states, two
projective bases are sufficient to quantify the entanglement,
while 16 bases are required for tomography. Assisted by the
DL method, we can achieve an “end-to-end”mapping between
the photon distribution and concurrence without considering
the form of the mapping functions. Moreover, this method,
which takes the whole photon distribution as the input, can
avoid estimation errors because it extracts the singular center
weak shift.

We also show that the advantages of our method become
more pronounced when scaling to larger numbers of qubits
or higher dimensions, which demonstrates that our entangle-
ment quantization method exhibits increasingly evident advan-
tages over quantum state tomography as the system scales up.
This highlights the potential of our method to efficiently char-
acterize entanglement in large-scale quantum systems.

APPENDIX A: RELATIONSHIP BETWEEN
CONDITIONAL STATE ρΓA

B AND THE
VALUES h0�1�jhσ̂xiw
For a two-qubit system ρAB , the local conditional state ρ

ΓA
B can

be generally represented as

ρΓA
B �

X
i, j�0,1

ρijjiihjj: (A1)

The weak values of σx with the post-selected state being j0i and
j1i are, respectively, denoted as

h0jhσ̂xiw�
Tr�σ̂xρΓA

B j0ih0j�
Tr�ρΓA

B j0ih0j�
� ρ10

ρ00
,

h1jhσ̂xiw�
Tr�σ̂xρΓA

B j1ih1j�
Tr�ρΓA

B j1ih1j�
� ρ01

ρ11
: (A2)

For any physical state, Tr�ρΓA
B � � 1 and ρΓA

B � ρΓA†
B . The ele-

ments of the density matrix can be expressed by

ρ00 �
jh1jhσ̂xiwj

jh0jhσ̂xiwj � jh1jhσ̂xiwj
,

ρ01 �
jh0jhσ̂xiwjh1jhσ̂xiwj

h0jhσ̂xiwj � jh1jhσ̂xiwj
,

ρ10 �
jh1jhσ̂xiwjh0jhσ̂xiwj

h0jhσ̂xiwj � jh1jhσ̂xiwj
,

ρ11 �
jh0jhσ̂xiwj

jh0jhσ̂xiwj � jh1jhσ̂xiwj
, (A3)

which are determined by these two weak values. In our work,
CNN needs only original information. The photon distribu-
tion on Bob’s side with the post-selected state j0i and j1i is
used as the input feature.

APPENDIX B: REPRESENTATION OF THE
VALUES jh1jhσ̂xiw j IN THE BLOCH SPHERE

It is well known that the conditional state of ρΓA
B can be

expressed as

ρΓA
B �r� � 1

2
�I � r · σ�, (B1)

where σ � �σx , σy, σz� and r � r�sin θ cos ϕ, sin θ sin ϕ,
cos θ�. r indicates the position of the conditional state of
ρΓA
B in spherical coordinates. As shown in Fig. 5, the connection
between the pure state j0i and ρΓA

B intersects with the x-o-y
plane. Obviously, the distance between these intersected points
and the center of the sphere (corresponding to maximally
mixed state 1

2 I ) is

d � r sin θ

1 − r cos θ
: (B2)

It is worth noting that d is related to the distance between the
conditional state ρΓA

B and maximally mixed state 1
2 I .

According to Eq. (A2), the values h1jhσ̂xiw can be
expressed as

h1jhσ̂xiw � ρ10
ρ11

� reiϕ sin θ

1 − r cos θ
: (B3)

As a result, the value jh1jhσ̂xiwj � d reflects the distance be-
tween the conditional state ρΓA

B and maximally mixed state

x

yy

zzzz

ooo
B�

ooo x

���
zz

Photon distribution

0

1

o

ˆ� �

�̂

Fig. 5. Value h1jhσ̂xiw of photon B on the state of ρΓA
B is shown in

the Bloch sphere, which is encoded in the photon B’s spatial distribu-
tion carrying orbital angular momentum.
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1
2 I . In addition, the representation of the weak value jh0jhσ̂xiwj
is similar to jh1jhσ̂xiwj.

APPENDIX C: WEAK VALUE EXTRACTION
FROM THE CONDITIONAL SPATIAL
DISTRIBUTIONS

For a two-qubit system ρAB , the local conditional state ρ
ΓA
B can

be generally represented as

ρΓA
B �

X
i, j�0,1

ρijjiihjj: (C1)

The weak value of σx with the post-selected state jki
(k ∈ f0,1g) is denoted as

hkjhσ̂xiw � Tr�σ̂xρΓA
B jkihkj�

Tr�ρΓA
B jkihkj�

�
P

i,j�0,1 ρijhkjσ̂x jiihjjkiP
i,j�0,1 ρijhkjiihjjki

:

(C2)

Note that this definition can be taken as the formal formalism
of the density-operator-based weak value [31]. In our experi-
ment, ρΓA

B and the transverse field ϕl �x, y� are chosen to be
the system and the pointer, respectively. The whole density
matrix is

ρall �
X

i, j�0,1

ρijjiihjj ⊗ jϕl �x, y�ihϕl �x, y�j: (C3)

After weak coupling, described by the interaction Hamiltonian
Ĥ � ζσ̂x ⊗ Px , the whole system is obtained as

ρfall � UρallU †, (C4)

where U � e−iĤΔt∕ℏ � e−iζσ̂x⊗Px (assuming Δt∕ℏ � 1). By
post-selecting the system on the state jkihkj, we get the pointer
state

rclρfp � Tr�ρfalljkihkj ⊗ I p�
�

X
i, j�0,1

ρijhkje−iζσ̂x⊗Px jii

× jϕl �x, y�ihϕl �x, y�j × hjjeiζσ̂x⊗Px jki

�
X

i, j�0,1

ρijhkjii
P

i,j�0,1 ρijhkje−iζσ̂x⊗Px jiihjjkiP
i,j�0,11 ρijhkjiihjjki

× jϕl �x, y�ihϕl �x, y�j

×

P
i,j�0,1 ρijhjje−iζσ̂x⊗Px jkihkjiiP

i,j�0,1 ρijhkjiihjjki
hjjki: (C5)

Taking Eq. (C2) into the pointer state, the pointer state
becomes

rclρfp �
X

i, j�0,1

ρijhkjiihjjkie−iζhkjhσ̂xiw⊗Px

× jϕl �x, y�ihϕl �x, y�jeiζhkjhσ̂xiw⊗Px

�
X

i, j�0,1

ρijhkjiihjjki

× jϕl �x − ζhkjhσ̂xiw, y�ihϕl �x − ζhkjhσ̂xiw, y�j. (C6)

For the LG beam jϕl �x, y�i ∝ �x � iy�e−x2�y2 , the pointer state
satisfies

ϕl �x − ζhkjhσ̂xiw, y�
� ϕl �x − ζ × Re �hkjhσ̂xiw�, y − ζ Im�hkjhσ̂xiw��. (C7)

Therefore, the weak value information is encoded into the
pointer state and detected by ICCD as conditional spatial dis-
tributions [32,33]. The differentiation due to the approxima-
tion was discussed in Ref. [34].

APPENDIX D: MECHANISM OF THE CNN

In the convolutional (Conv) path, the matrix of input image I
is transferred into a feature space through three convolutional-
max pooling layers. To illustrate the convolution operation, as-
sume that the filter of the Conv layer is

conv �

0
B@

θ11 θ12 θ13
θ21 θ22 θ23
θ31 θ32 θ33

1
CA: (D1)

The output feature matrix O � I � conv is denoted as

Oi,j �
X3
k, l�1

I i�k,j�lθk,l , (D2)

where i, j represent the element indices of the matrix. To re-
duce the size of feature space, a max pooling (MP) layer is set
followed by the Conv layer. Assuming the filter of the MP layer
is 2 × 2, the output matrix M can be written as

Mi,j � max�Oi,j,Oi�1,j,Oi,j�1,Oi�1,j�1�: (D3)

By implementing the same operations three times, the Conv
path would output the final feature map, which is flattened into
a one-dimensional vector ~x and sent to full connection (FC)
layers. The FC consists of four layers, which is constructed
through the relation

~x1 � σRL�W 1~x � ~b1�, ~x2 � σRL�W 2~x1 � ~b2�,
~x3 � σRL�W 3~x2 � ~b3�, C� W 4~x3 � b4: (D4)

W i�1,2,3,4 and bi�1,2,3,4 represent the weight matrix and bias,
respectively, which would be updated in the training process.
The nonlinear function ReLU is defined by σRL�z1,z2,
z3,…,zn���max�z1,0�,max�z2,0�,max�z3,0�,…,max�zn,0��.
The output C is compared with the actual concurrence. The
errors are sent back to the networks to optimize the weight ma-
trix W i�1,2,3,4 and bias bi�1,2,3,4.
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